

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

X-Ray Powder Diffraction Patterns of Some *n*-Alkanone Urea Inclusion Compounds

B. W. Brodman^a; Jack Radell^a

^a Chemistry Research Laboratory, Pitman-Dunn Research Laboratories, Philadelphia, Pennsylvania

To cite this Article Brodman, B. W. and Radell, Jack(1967) 'X-Ray Powder Diffraction Patterns of Some *n*-Alkanone Urea Inclusion Compounds', *Separation Science and Technology*, 2: 1, 139 — 142

To link to this Article: DOI: 10.1080/01496396708049920

URL: <http://dx.doi.org/10.1080/01496396708049920>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NOTE

X-Ray Powder Diffraction Patterns of Some *n*-Alkanone Urea Inclusion Compounds

B. W. BRODMAN and JACK RADELL

CHEMISTRY RESEARCH LABORATORY,
PITMAN-DUNN RESEARCH LABORATORIES,
FRANKFORD ARSENAL,
PHILADELPHIA, PENNSYLVANIA

Summary

The urea-inclusion-compound-forming ability of a series of closely related ketones was measured to determine the applicability of this procedure for separating and isolating the ketones. The results indicate this can be done.

To determine the feasibility of separating and isolating closely related *n*-alkanones, a study of the formation of crystalline urea inclusion compounds of straight-chain ketones was undertaken. Although other methods, such as vapor-phase chromatography, could be employed, the proposed method would be simpler for working with larger quantities of material. Earlier literature (1) has shown that normal ketones are capable of forming urea inclusion compounds starting with acetone. The use of urea inclusion compounds as a separation tool is particularly attractive because these compounds are easy to decompose to isolate the guest ketone trapped in the host molecule of urea. Such a process has potential commercial value, since the urea can be isolated and recycled. The nature of the urea inclusion compounds has been described in a recent review article (2).

DISCUSSION

The study of the X-ray powder patterns of the urea inclusion compounds of each of the ketones listed in Table 1 was undertaken to determine whether a crystalline complex had formed and whether the complex was contaminated with uncomplexed tetragonal urea.

This could be done from the X-ray data, as was shown earlier (3). In general, the stability of the urea inclusion compounds of a homologous family of straight-chain molecules increases, as does the chain length. This is true also of the ketones; 2-propanone* when treated with the urea-methanol solution formed no crystalline product. This fact is shown by the absence of interplanar spacings. 2-Butanone* treated similarly produced only pure uncomplexed urea. Urea is characterized by the spacings at 2.52 to 2.57, 2.81 to 2.83, 3.03 to 3.06; 3.63, and 3.96 to 4.03 Å (which is the most intense spacing). The peak at 2.52 to 2.57 Å is ambiguous because it is characteristic of both the tetragonal uncomplexed urea and the hexagonal urea inclusion compound.

The shortest chain ketone to form some inclusion compound was 2-pentanone. Although 2-pentanone was highly contaminated with uncomplexed urea, the peaks characteristic of the inclusion compound appeared weakly at 4.07 to 4.17 Å and 2.38 to 2.43 Å. The 3-pentanone showed no evidence for urea-inclusion-compound formation. This is consistent with an earlier postulate (4) stating

* Although urea inclusion compounds have been previously reported by Truter (1), the procedure used in this work produced none.

TABLE 1
X-Ray Powder-Diffraction Patterns of Urea Inclusion Compounds of *n*-Alkanones

	1.93-1.95 ^a	1.98-2.00	2.01-2.03	2.05-2.08	2.22-2.24	2.38-2.43	2.52-2.58	2.61-2.63	2.66-2.75	2.81-2.83
2-Propanone										
2-Butanone							0.13			0.04
2-Pentanone		0.04			0.04	0.07	0.15			0.07
3-Pentanone				0.32		0.12	0.11			
2-Hexanone	0.04	0.05	0.04	0.05	0.09	0.12	0.15	0.05	0.09	
3-Hexanone	0.02 ^c	0.04	0.05	0.05	0.04	0.07	0.13	0.13	0.15	0.08
2-Heptanone		0.02	0.02				0.02	0.08		
3-Heptanone			0.06				0.06	0.08	0.08	
4-Heptanone				0.07		0.07	0.07	0.14	0.12	
3-Octanone			0.06	0.04			0.11	0.11		
4-Octanone	0.04		0.04	0.05			0.05	0.09	0.09	
4-Nonanone	0.03	0.04	0.04	0.04			0.09	0.09		
5-Nonanone				0.03			0.03	0.05		
2-Decanone		0.03	0.04	0.07		0.02	0.03	0.11	0.05	
3-Decanone		0.05	0.05	0.07		0.03		0.08	0.07	
4-Decanone	0.03	0.04	0.04	0.04		0.04	0.04	0.10	0.11	
2-Umdecanone				0.08		0.08	0.07	0.16	0.11	

* Interplanar spacings in Å, using CuK_α radiation.

^b Grams of solid isolated per 1 g of guest.

^c Relative intensities; 1.00 the strongest.

that not only is there a requirement on the minimum number of methylene groups to form a urea inclusion compound but also that the uninterrupted sequence favors inclusion compound formation. The maximum uninterrupted sequence is four methylene groups for 2-pentanone and three for 3-pentanone. Both 2 and 3 hexanone are highly contaminated by uncomplexed urea but have much stronger interplanar spacing to characterize the urea inclusion compound than any smaller homologues previously mentioned. This trend continued, and the presence of some urea along with inclusion compound is verified by the X-ray data up to and including all the heptanones. The octanones are the shortest ketones converted to urea inclusion compounds in this study which were pure and uncontaminated by tetragonal urea.

Although this study did not include all theoretically possible position isomers, a large enough number of representative compounds have been examined to show a difference in the complex ability of the various ketones. This evidence is based upon the fact that the data in the table roughly relate the instability of the complex with the intensity of the uncomplexed urea (3) spacings. As a result, this work indicates that one could separate two ketones by such a technique. Closely related ketones might still be separated by using an amount of urea-methanol solution capable of combining

								Grams of solid ^b
3.03-3.06	3.27-3.28	3.37-3.41	3.56-3.59	3.63	3.85-3.90	3.96-4.03	4.07-4.17	4.37
0.04			0.04		1.00			0.00
0.15			0.11		1.00	0.03		0.08
0.33			0.13		1.00			0.10
0.15	0.17	1.00	0.17	1.00	0.02		0.78	0.25
0.15	0.21	0.84	0.55	1.00	0.53		0.21	0.18
0.03	0.02	0.21	0.92	0.11	0.11	1.00	0.03	0.28
0.10		0.06	1.00	0.08	0.29	0.79		0.23
0.12		0.50	0.81	0.12	0.45	1.00		0.28
		0.30	0.92	0.11		1.00	0.04	0.51
		0.16	1.00	0.05		0.74		0.26
0.08	0.14	1.00	0.10	0.04	0.88		0.45	0.25
	0.11	1.00	0.06		0.52		0.46	0.35
0.02	0.28	0.77	0.11		1.00	0.04	0.16	0.32
	0.18	0.50	0.05		1.00		0.30	0.34
0.08	0.24	0.71	0.11		1.00	0.04	0.51	0.33
0.10		0.50	0.73	0.11		1.00	0.50	0.35
								0.40

with the most stable ketone homologue only. This separation technique could be applied to isolate straight-chain ketones from branched ketones as well.

EXPERIMENTAL

The weight of complex isolated per gram of ketone used is reported in Table 1. The method used for preparing the urea inclusion complexes and the X-ray diffraction techniques have been previously described (5).

REFERENCES

1. E. V. Truter, *Wool Wax*, Cleaver-Hume, London, 1956, p. 212.
2. J. F. Brown, Jr., *Sci. Am.*, **207**, 82 (1962).
3. J. Radell and J. W. Connolly, in *Advances in X-Ray Analysis*, Vol. IV (W. M. Mueller, ed.), Plenum, New York, 1961, pp. 140-150.
4. J. Radell, J. W. Connolly, and W. R. Cosgrove, Jr., *J. Org. Chem.*, **26**, 2960 (1961).
5. J. Radell, B. W. Brodman, and E. D. Bergmann, *Tetrahedron*, **20**, 13 (1964).

Received by editor October 10, 1966

Submitted for publication October 20, 1966